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Wave motion in a viscous fluid of variable depth 
Part 2. Moving contact line 
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An earlier derivation (Miles 1990a) of the partial differential equation for the 
complex amplitude of a gravity-capillary wave in a shallow, viscous liquid of 
variable depth and fixed contact line is extended to accommodate a meniscus with 
a moving contact line at which the slope of the meniscus is assumed to  be 
proportional to (but not necessarily in phase with) the velocity. The motion of the 
contact line implies capillary dissipation, which is absent for a fixed contact line. The 
results are applied to  the normal reflection of a wave incident from a region of 
uniform depth on a beach of uniform slope. The reflection coefficient has the form 
R = R, R,R,, where R, is the coefficient for an ideal fluid, and R, and R, comprise the 
respective effects of viscosity and capillarity. 

1. Introduction 
I present here the extension of an earlier analysis (Miles 1990a, hereinafter referred 

to as I) of linear wave motion in a viscous fluid of variable depth and fixed contact 
line t o  accommodate a meniscus with a moving contact line. I assume, as in I, that 

Kh + 1, KS, + u2 + 1, ul, = O(S),  (1.1 a-c) 

where ( 1.2 a*) 

are inertial, viscous and capillary lengthscales, w is the angular frequency of the wave 
motion, v is the kinematic viscosity, T is the surface tension, h is the depth, and u 
is the slope of the beach at the straight shoreline, where h - ux. I also assume that 
the static contact angle is prescribed and that the dynamical variation of the contact 
angle is linearly related to  the contact-line velocity according to (cf. Hocking 1987) 

z, = sz,, (1.3) 
where Z is the complex amplitude of the dynamical component of the free-surface 
displacement, and s is the phenomenological parameter that  has the dimensions of 
inverse velocity and is expected to be a complex function of frequency. 

It is worth emphasizing that (1.3) is the most general linear boundary condition 
that is admissible for the conventional (Laplace) model of capillary action. The 
parameter s, which appears to have been measured only for steady motion, could be 
determined for harmonic motion from measurements of the frequency and damping 
of standing waves in a vertical cylinder, but this would require a rather precise 
determination of the corresponding viscous effects. 

The invocation of (1.3) in place of the assumption of a fixed contact line, together 
with the requirement that the shear stress be bounded, requires the conventional no- 
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slip condition on the bottom to be replaced by a slip condition that I pose in the form 
(see Dussan V. 1979 for discussion and references) 

u= Z,(n.V) u (2 = - h ) ,  (1.4) 
where Uis the c.omplex amplitude of the tangential velocity, n is the normal directed 
into the fluid, and I, is a slip length that (by hypothesis) decays away from the 
contact line and, like s, may be a complex function of the frequency. Physical 
considerations imply that 1, is significant only in a small neighbourhood of the 
contact line, and it does not enter the outer (asymptotic) solution; see e.g. $4. 

The boundary condition on the tangential stress a t  the free surface may be posed 
in the comparable form 

where x and z are the horizontal and vertical coordinates ( z  is positive up), U and W 
are the complex amplitudes of the horizontal and vertical components of the 
velocity, V, is the horizontal component of V, and I ,  is a length that may be expressed 
in terms of the surface-film parameters (Miles 1967. 1990~)  or, more conveniently, 
regardcd as a phenomenological parameter to be determined from laboratory 
measurements. The special cases of vanishing tangential stress or vanishing 
tangential velocity (inextensible film) are obtained by letting 1,/6+ 00 or 0. 

u= - l , (U ,+V,W) ,  (1.5) 

The primary result in I is the partial differential equation 

v * ( H V Y Z )  +KZ = 0, (1.6) 
where H = H ( h / S )  and 9 = 1-1; V2. In $ 3  below, following the determination of the 
meniscus z = zo(x)  in $2,  I extend the formulation of I by replacing the surface 
condition U, + V, W = 0 by (1  3) and the bottom condition U = 0 by (1.4) and obtain 
(1.6) with 

(1.7a, b )  2 2  = 2-1; v. (CVZ), 

where H and C are given by (3.6) and ( 2 . 5 b ) .  The behaviour of H for h+z, 9 161 is 
similar to that in I and corresponds to a conventional boundary-layer approximation. 
But, whereas (in I)  H = O(h/6 )3  as h/S+O with 1, = 0 and either I, = 0 or 1, = 00, 

H = O [ ( h + ~ , ) ~ / 6 ~ ]  as (h+z,)/S+O with 1, bounded away from zero. The singularity 
of (1.6) at  the contact line, h+z, = 0 ,  is regular in each of these limits, but the 
exponents in I are ( 2 , l .  O , O ) ,  in consequence of which the contact line must be fixed 
in order to avoid a singularity in the shear stress; the exponents in the present case 
are (2 ,1 ,1 ,0 ) ,  and the shear stress is bounded for a moving contact line. 

In $4, 1 solve (1.6), subject to the contact-line condition (1.3), for the normal 
reflection of a plane wave by a laboratory beach (h  = ux for x < x1 and h = h, for 
x 3 xl), thereby generalizing the result for a fixed contact line (Miles 1990b). The 
magnitude of the reflection coefficient has the form 

I4 = exp ( -  P, ! -Pd> (1.8) 

where (1.9a, b)  
2xK 

represent viscous and capillary dissipation (after neglecting a weak dependence of pc 
on the contact angle; see $4). The ext-rapolation (dubious a t  best) of Ablett's (1923) 
data for s yields the rough estimate of pr x 10-2u-17'-1 for a wave of period T seconds 
on clean water. This yields p c  = lo-' compared with p, = 10' for cr = lo-' and T = 

1 s. 
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I also have generalized the solution of I $6 for a Stokes edge wave and find that 
the logarithmic decrement is given by the exponent p,+pc in (1.8). 

2. The meniscus 
The static free surface, z = zo(x) ,  is governed by the capillary equation 

T 12 2:: 
C "  - 

z 0 = - -  pgRo ( 1 + zh2)f ' 

where R, is the radius of curvature. We assume a uniformly sloping bottom, z = 
- h  = -ax, in that domain in which zh differs significantly from zero. The contact 
line, x = x,, is located by 

(2.2a, 6 )  

wherein we have approximated tan-la by a and 0, is the static contact angle. The 
solution of (2.1), (2.2), and the requirement z,+O as x+ 00, is given by (a particular 
case of Euler's elastica; cf. Lamb 1928, $127) 

tan-l zI, + a = O,, zo = - axc = 2, (x = x,), 

where 

x-x, - = log(()+2(cos+$,-cos+$), tan f$, 
1, tan +$ 

= -2 sin+$, Z ; ( X )  = tan $, 20  - 
1, 

$c = Oo-a, x, = 2a-l lcsin+$,, 

( 2 . 3 ~ )  

(2.3b, c) 

(2.4a, b )  

and 
The contact angle 0, lies in (0, IT), with $, 5 0, z, 3 0 and x, 5 0 for 8, 5 a. We 

exclude those solutions that contain closed loops, which presumably are unstable, or 
intersect the bottom in x > 2,. 

The vertical component of the capillary force induced by the dynamical 
perturbation 2-2, = [ is given by 

varies monotonically from 0 a t  x = 00 to  $c a t  the contact line. 

T --- = T v . ( C v $ ,  C = (1+2h2)-; = COS". (: d,) (2.5a, b )  

3. The shallow-water equation 
The continuity and linearized Navier-Stokes equations are (Lamb 1932, $328) 

v - q  = 0 ,  qt = -v -+gz + v V q  ( - h  < z < z,+[), (3 . la ,  b )  

where q = (u,  w )  is the velocity, u and w are the horizontal and vertical components 
thereof, p is the total pressure, gz is the gravitational potential, v is the kinematic 
viscosity, and 5 is the free-surface displacement. The linearized free-surface 
conditions, projected on z = z,, are (1.5) and 

t )  

(3.2a, b )  
P P 

where p d  is the hydrodynamic pressure, and I ,  is the surface-film parameter. The 
bottom conditions are (1.4) and 

Pd T 
w = [ t + u . v z , ,  --+g[+2vw, = - V - ( C V [ )  (2 = z,), 

w + u * V h  = 0 ( Z  = -h ) .  (3.3) 
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Introducing the complex scalar and vector potentials CP and A according to 

q ,  !?!, = Re { (V@ + V x A ,  iw@, 2) ePiff"}, (3.4) 

proceeding as in 1 tj2, and invoking Kh and lVhl < 1, we obtain (Appendix A ;  note 
that z has been eliminat!ed and that V and V ,  are now equivalent) 

V.(HVL?Z)+KZ = 0, 2'25 Z-lEV*(CVZ) ,  (3.5a, 6) 

( P )  

1 2 (cosh A-  1) + (Ab +A,) sinh A 
( 1  +A,A,) sinh A + (Ab +A,)  cosh A ' 

where H = h + z , - 6  

The limiting approximations to H on the assumption that lhbl << 1 are 

and 

(3.6) 

(3.7a-c) 

(3.9) 

We assume that dA/dx, 1, and 1, tend to  constants as A $ 0 and that Z i s  either 
independent of. or periodic in, y ;  ( 3 . 5 ~ )  then reduces to a fourth-order, ordinary 
differential equation with a regular singularity (at A = 0) of exponents 2 , 1 , 1 , 0  and 
admits four, linearly independent solutions through the method of Frobenius (Ince 
1944, $5 16.1-16.3). The boundary conditions a t  A = 0, as determined by (1.3) and the 
requirement that the mass flux (see (A 8) in Appendix A) vanish a t  the shoreline, are 

Z,+iwsZ = 0, H ( Y Z ) ,  = 0 ( A  = 0). (3.10a, 6) 

It can be shown that the complex amplitude of the shear stress, ~ v ( u ~ + V , ~ ) ,  
behaves like A V 9 2 ,  which is bounded as A $0. But if 1, = 0 (as in I) H vanishes like 
A3, rather than A2,  the exponents of the singularity are 2 , 1 , 0 , 0 ,  and the shear stress 
then is bounded at  A = 0 only if Z vanishes there. 

4. Reflection from uniform slope 
We seek the solution of (3 .5)  for 

on the assumption that the solution in the domain of uniform depth has the form 

where 2, is the complex amplitude of the wave a t  the toe of the beach ( x  = x,), and 
R, which is to be determined, is the reflection coefficient referred to x = xl. Note that 
H,, as given by (3.9) for x = x,, has a negative imaginary part, and hence that k ,  has 
a positive imaginary part, in consequence of the viscous damping in the boundary 
layers. 
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We proceed on the assumptions that K161 < g2 < K h  and ul, = O(6).  Capillarity 
then is negligible in h 4 161, and (3 .5)  admits the outer solution 

where J, and & are Bessel functions, H is given by (3 .9) ,  

x1 2c7-’(KH1)+ = 2g-’[K(hl-dSA,)]i, (4 .3c)  

and xo is to  be determined. Z ( 4 . 2 ~ )  = Z ( 4 . 3 ~ )  at x = x, by construction; requiring 
d2/dx to  be continuous and invoking Kh,  9 u2 (Ixll 9 l), we obtain 

(4 .4u)  

(4.4b) 
I1 J1 ( X I  1 cos X O  - ~ ( x J  sin XO 

[ J (  0 X I  1 ~ 0 ~ x 0  - yO(x1) sin XO 
R = exp 2i tan-’ { 

= e x p { 2 i ( ~ ~ + ~ ~ - $ ) } [ l  +O(x; ’ ) ] .  

Turning to the solution of (3 .5)  in h = O(d), we introduce 

and transform ( 3 A 5 )  and (3.10) to 

[H,(YZ)’]’+aZ = 0, 9 2  = 1 - (CZ) ‘ ,  (4.6u, 6 )  

and Z’+ipZ = 0, H,(92)’  = 0 (6 = 0) ,  (4.7a, b) 

where 2 = Z ( c ) .  We pose the solution of (4.6) and (4 .7)  for la1 < 1 in the form 

z = z ( o ) + ~ & ,  (4.8) 

where Z(O) = u + b E ( ( ) ,  a = 2, (4.9u-c) 

2, = Z(O),  E ,  E E(O), Eh = E’(O), E is determined by (recall that C - 1 as ct 00)  

9 E  = 0 ,  E = O(e-5) (ct GO), E d 5  = 1, (4.10 a-c) 1: 
and fi is determined by (note that (9Z(O))’ = 0) 

- , .  
[H,(YZ)’ ] ’  = -2, 2 = 2’ = 0 (6 = O ) ,  (4.11 a, b) 

(4 .7b) ,  and the matching of (4.8) to ( 4 . 3 ~ ) .  
Integrating (4.11 a )  from 0 to 6, invoking (4.7 b) ,  dividing by H,, integrating again, 

and choosing the Bonstadt of integration such that the forcing function for YZ is 
orthogonal to the eigensolution E ,  we obtain 

where el is an arbitrary constant of which ( 4 . 1 2 ~ )  is independent. (We note that, 
since H, = O(c2)  and Z = O(1) as ( + O ,  M = O(log[), 2” = O(logc), and (2”’ = O(l),  
so that the shear stress (see last paragraph in $ 3 )  is bounded a t  the contact line.) 
Integrating ( 4 . 1 2 ~ )  by variation of parameters and invoking (4.1 1 b) ,  we obtain 

5 
-a0 = [ [ E ( t ) J Y r )  - ~ ( r ) F ( e ) l & ( r )  dr, m e )  = E ( 0  J [C(r)E2(r)1-’  dr .  

0 0 

(4.13a, b)  
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The sequence (4.8), (4.12) and (4.13) may be solved by iteration, starting from the 
first approximation Z = Z(O). It follows from Z = O(1) and H ,  = O(5) as 5 t  co that 
a- C,$+Colo_g[ C,Cl and C,  are constants), and hence from (4.12) that (since 
YZ - 2-2") Z - M ,  by virtue of which the outer approximation to Z at any stage 
of the iteration is given by 

2 - a+&(5), (4.14) 

which must be matched to ( 4 . 3 ~ ) .  
We proceed to the second approximation. Substituting ( 4 . 9 ~ )  into (4.12b), 

choosing 5, large enough to justify the asymptotic approximation (3.9) or, after 
invoking (4.5c, d )  and (2.4b) 

(4.15a, b )  A* xc H ,  - Y(E-5*), 5* = ---, 
Y 4 

and remarking that JZ(O)(y)dy - at+b+O(e-f) ,  
0 

by virtue of (4.10a, c),  we obtain 

(4.16) 

(4.17) 

wherein O ( a )  may comprise O(a ha) .  Substituting (4.17) into (4.14), we obtain 

(logH,+L)+O(a2) (4.18) 

where L is a constant that could be determined through a more complete 
determination ofM than that provided by (4.17) but is more readily determined from 
the following matching. 

Returning to the outer approximation (4.3), letting H,+ 0 therein, and invoking 
K/a2 = a/y2, we obtain 

( 4 . 1 9 ~ )  

where 

and C = 1.78 ... is Euler's constant. Matching (4.18) and (4.19), we obtain 

A = ~ , [ J O ( X l )  cos x o  - G(x1) sin xol-l  (4.19 b )  

na(R x b ) ,  (7) 
a = A c o s ~ , ,  tanXo = - >->+- L = log . (4.20a-c) 

Y Y J c a  

Combining xo x tanXp with x1 ( 4 . 3 ~ )  in (4.4b), remarking that x1 then may be 
approximated by 2(Kh1)2 within the existing error factor of 1 + O( l/xl), and invoking 
(4.9b, c) ,  we place the reflection coefficient in the form 

R = R, R,R,, (4.21 a )  

where R, = exp [4ia-1(~h,)t-+inl (4.21 b )  

comprises the phase shift over the beach (R  = R, for KS = K1, = 0) ; 

R, = exp (2inc~-~KSA,) ( 4 . 2 1 ~ )  
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and (4.21d) 

comprise the respective effects of viscosity and capillarity and are independent of 
both h, and (as anticipated) I,. The magnitude of R is given by 

IRI = IR,RcI = exp ( -P”-PCL ( 4 . 2 2 ~ )  

where 

in which py and pc represent viscous and contact-line damping, /3, is the real part of 
p, and an error factor 1 + O ( l / x l )  is implicit. The exponent p, reduces to that 
obtained previously (Miles 1990b) for either A,  = l(Zf/d = a) or A, = 2(Z,/d = 0). 

The approximations 

E, = I+&,, E; = - ( i + q , ) ,  Q, = ~ - c o s ~ + ~  (4.23a-c) 

are derived in Appendix B; however, absent reliable estimates of p, it suffices for 
qualitative estimates of contact-line dissipation to adopt the approximations E,  = 
1 and Eh = - 1 (which is tantamount to neglecting the meniscus), thereby reducing 
( 4 . 2 2 ~ )  to 

(4.24) 

Ablett’s (1923) measurements for steady (o + 0) flow of water over wax yield s = 
3.7 s/cm, the extrapolation of which to  representative laboratory frequencies implies 
/3 = 6.5/T for a wave of period T in clean water; pc then may be approximated by 
2nw/crgs = 10-2(crT)-1, although the extrapolation to  1/31 9 1 is dubious a t  best. This 
estimate suggests that  contact-line motion of clean water on a 10% slope could 
reduce IRI (relative to  its value for viscous action alone) by 10% for a one-second 
wave. On the other hand, the experimental observations of Mahony & Pritchard 
(1980) for waves of period somewhat less than one second suggest that  the contact 
line remains fixed (s+ m )  for such short periods, a t  least for small amplitudes. 
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and Comp. Math. Program Contract N00014-86-K-0758 administered by the Office 
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Appendix A. Derivation of (3.5) 
The derivation of (3.5) from (3.1)-(3.4) follows I s 2  after allowance for differences 

in the boundary conditions. Substituting (3.4) into (3.1) and invoking v = -iod2, we 
obtain Vz@ = 0, d2V2A = A .  

Eliminating 17, from (3.2b) with the aid of (3.4), invoking (2.5), introducing U and 
W ,  the complex amplitudes of u and w (cf. (3.4)), and the operator 9 (3.5b), and 
invoking T = pgl: and v = - i d 2 ,  we transform (3.2) and (3.3) to 

W = - i w Z + U - V Z , ,  @+2d2W,= (g/iw)YZ, U = - l , ( U , + V , W )  ( z = z o ) ,  
(A 2a-c) 
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and w + u. Vh = 0, u = 1, u, ( 2  = - h). (A 3a, b) 

@ = @,(x) + @,(x)  z (A 4a) 

and A = z1 x [ Y, (x )  cosh ( z / 6 )  +6Yl(x) sinh ( z / 6 ) ]  (zl-  Yo, = 0 ) ,  (A 4b) 

We pose the shallow-water approximation to the solution of (A 1) in the forms 

where x = (x ,y)  and z1 is the unit vector in the z-direction. The corresponding 
approximations to the complex amplitude of U and W are 

U = V@, - 6* Yo sinh ( z / 6 )  - Yl cosh ( z / 6 )  (A 5a) 

and W = -zV2@,+@1+(V.Yo)cosh(z/S)+6(V.  Y,)sinh(z/S). (A 5b) 

Substituting (A 4a)  and (A 5 a ,  b) into (A 2) and (A 3) and invoking ( l . l ) ,  we obtain 

@, = (g/lw)YZ, Q1 = -iwZ+V.{[z,-6D-1 (coshA-1 +A,sinhA)]V@,}, 
(A 6a, b )  

(A 6c)  

(A 6 4  

yo = 6D-l (cash 4, + A, sinh A, - cash A, - A, sinh A,) v@,, 
Yl = D-’ (sinh A, + A, cosh A, + sinh A, + A, cosh A,) V@,, 

and (3.5), where A, A, and A, are defined by (3.7), 

h 2 
A --,  A f = A ,  D=(1+AbA,)cosh~+(A,+A,)sinhA. (A7a-c) 

The complex amplitude of the volumetric flux implied by (A 5), (A 6) and (3.7) is 

,-S 6 

Udz = HV@, = (g/io) HVLYZ. S_r 

Appendix B. Solution of (4.10) 
Invoking (4.6b), we rewrite ( 4 . 1 0 ~ )  in the form 

E” - E = [( 1 - C) E’]’ (qE’)’. (B 1 )  

It follows from (2.3a), (2.5b) and ( 4 . 5 4  that q = O(?,h2) = O(?,hEe-zt) as E +  00. Solving 
(B 1) by variation of parameters, invoking (4.10b), and integrating by parts, we 
obtain 

(B 2) 
where the constant c is determined by ( 4 . 1 0 ~ ) .  

The integral equation (B 2) may be solved by iteration (cf. Lighthill 1957), starting 
from E = e-5. Substituting this first approximation into (B 2) and invoking (4.10c), 
we obtain the second approximations 
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pa = q(0)  = 1 - cos3 @c 

55 

where 

and O(qt)  errors are implicit. The approximation q = qo e-2t, which gives the correct 
value of q(0) and the correct asymptotic behaviour of q, reduces (B 4 a )  to E,  = 

(B 5 )  

1 + ha. 
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